
Clastic
Release 20.0

May 14, 2021

Contents:

1 Installation 3

2 Getting Started 5
2.1 Tutorial: Time zone convertor . 5
2.2 Tutorial: Link Shortener . 14
2.3 Applications and Routes . 23
2.4 Middleware . 29
2.5 Errors . 30
2.6 The MetaApplication . 36
2.7 Static . 36
2.8 Troubleshooting . 37
2.9 Clastic Compared . 37

Python Module Index 39

Index 41

i

ii

Clastic, Release 20.0

Clastic is a Pythonic microframework for building web applications featuring:

• Fast, coherent routing system

• Powerful middleware architecture

• Built-in observability features via the meta Application

• Extensible support for multiple templating systems

• Werkzeug-based WSGI/HTTP primitives, same as Flask

Contents: 1

https://pypi.org/project/clastic/
https://calver.org
https://github.com/mahmoud/clastic/blob/master/CHANGELOG.md
https://github.com/pallets/werkzeug
https://github.com/pallets/flask

Clastic, Release 20.0

2 Contents:

CHAPTER 1

Installation

Clastic is pure Python, and tested on Python 2.7-3.7+, as well as PyPy. Installation is easy:

pip install clastic

Then get to building your first application!

from clastic import Application, render_basic

app = Application(routes=[('/', lambda: 'hello world!', render_basic)])

app.serve()
Visit localhost:5000 in your browser to see the result!

3

Clastic, Release 20.0

4 Chapter 1. Installation

CHAPTER 2

Getting Started

Check out our Tutorial for more.

2.1 Tutorial: Time zone convertor

Note: This document starts out with a fairly simple application code and proceeds by building on it. Therefore,
it would be helpful to the reader to code along and try out the various stages of the application. In this manner,
completing it should take about an hour.

While Clastic supports building all sorts of web applications and services, our first project will be a traditional HTML-
driven web application. It will convert a given time (and date) between two time zones. The user will enter a date and
a time, and select two time zones from a list of all available time zones, one for the source location and one for the
destination location. A screenshot of the final application is shown below.

Before we start, a note about time zones: these are represented in “region/location” format, as in “Australia/Tasmania”.
While most such codes have two components, some contain only one (like “UTC”), and some contain more than two
(like “America/North_Dakota/New_Salem”). Also note that spaces in region and location names are replaced with
underscores. Refer to the “List of tz database time zones” for a full list.

• Prerequisites

• Getting started

• Handling request data

• Static assets

• Working with JSON

5

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Clastic, Release 20.0

Fig. 1: After selecting the time and two time zones, clicking the “Show” button will display the given time in the
source location and the corresponding time in the destination location.

2.1.1 Prerequisites

It’s common practice to work in a separate virtual environment for each project, so we suggest that you create one for
this tutorial. Read the “Virtual Environments and Packages” section of the official Python documentation for more
information.

Clastic works with any version of Python. Let’s start by installing it:

pip install clastic

The example application also makes use of the dateutil package. Note that the PyPI name for that package is python-
dateutil:

pip install python-dateutil

2.1.2 Getting started

Let’s start with an application that just displays the form, but doesn’t handle the submitted data. It consists of a Python
source file (tzconvert.py) and an HTML template file (home.html), both in the same folder.

Here’s the Python file:

import os
from datetime import datetime

from clastic import Application
from clastic.render import AshesRenderFactory
from dateutil import zoneinfo

CUR_PATH = os.path.dirname(os.path.abspath(__file__))

(continues on next page)

6 Chapter 2. Getting Started

https://docs.python.org/3/tutorial/venv.html
https://dateutil.readthedocs.io/en/stable/

Clastic, Release 20.0

(continued from previous page)

def get_location(zone):
return zone.split("/")[-1].replace("_", " ")

def get_all_time_zones():
zone_info = zoneinfo.get_zonefile_instance()
zone_names = zone_info.zones.keys()
entries = {get_location(zone): zone for zone in zone_names}
return [

{"location": location, "zone": entries[location]}
for location in sorted(entries.keys())

]

ALL_TIME_ZONES = get_all_time_zones()

def home():
render_ctx = {

"zones": ALL_TIME_ZONES,
"default_src": "UTC",
"default_dst": "UTC",
"now": datetime.utcnow().strftime("%Y-%m-%dT%H:%M"),

}
return render_ctx

def create_app():
routes = [("/", home, "home.html")]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

app = create_app()

if __name__ == "__main__":
app.serve()

Let’s go through this code piece by piece, starting at the bottom and working our way up.

In the last few lines, we create the application and start it by invoking its serve() method:

app = create_app()

if __name__ == "__main__":
app.serve()

Application creation is handled by the create_app() function, where we register the routes of the application.
Every Route associates a path with a function (endpoint) that will process the requests to that path. In the example,
there is only one route where the path is / and the endpoint function is home:

def create_app():
routes = [("/", home, "home.html")]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

2.1. Tutorial: Time zone convertor 7

Clastic, Release 20.0

The route also sets the template file home.html to render the response. Clastic supports multiple template engines;
in this application we use Ashes. We create a render factory for rendering templates for our chosen template engine
(in this case an AshesRenderFactory) and tell it where to find the template files. Here, we tell the render factory
to look for templates in the same folder as this Python source file. The Application is then created by giving the
sequence of routes and the render factory.

The home() function generates the data that the template needs (the “render context”). In the template, there
are two dropdown lists for all available time zones, so we have to pass that list. Here, we store this data in the
ALL_TIME_ZONES variable, which we have constructed using the get_all_time_zones() function, as a list
of dictionaries containing the location names and the full time zone code. The location name is the last component
of the time zone code, extracted using the get_location() function. The location name will be displayed to the
user, whereas the full code will be transmitted as the data. The entries will be sorted by location name. We also pass
default values for the form inputs: “UTC” for both the source and destination time zones, and the current UTC time
for the date-time to be converted:

def home():
render_ctx = {

"zones": ALL_TIME_ZONES,
"default_src": "UTC",
"default_dst": "UTC",
"now": datetime.utcnow().strftime("%Y-%m-%dT%H:%M"),

}
return render_ctx

The home.html template is given below. In the selection options, for each element in the render context’s zones
list, the location key is used for display and the zone key is used for the value:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Time zone convertor</title>

</head>
<body>
<h1>Time zone convertor</h1>
<form action="/show" method="POST">
<input type="datetime-local" name="dt" value="{now}" required>

<div class="timezones">
<div class="timezone">

<label for="src">From:</label>
<select name="src" id="src">
{#zones}
{@eq key=location value="{default_src}"}
<option value="{zone}" selected>{location}</option>
{:else}
<option value="{zone}">{location}</option>
{/eq}
{/zones}

</select>
</div>

<div class="timezone">
<label for="dst">To:</label>
<select name="dst" id="dst">
{#zones}
{@eq key=location value="{default_dst}"}

(continues on next page)

8 Chapter 2. Getting Started

https://github.com/mahmoud/ashes

Clastic, Release 20.0

(continued from previous page)

<option value="{zone}" selected>{location}</option>
{:else}
<option value="{zone}">{location}</option>
{/eq}
{/zones}

</select>
</div>

</div>

<button type="submit">Show</button>
</form>

</body>
</html>

With these two files in place, run the command python tzconvert.py and you can visit the address http://
localhost:5000/ to see the form.

2.1.3 Handling request data

At first, our application will not display the converted time on the same page. Instead, it submits the form data to
another page (the /show path), therefore we need an endpoint function to handle these requests. First, let’s add the
corresponding route:

def create_app():
routes = [

("/", home, "home.html"),
("/show", show_time, "show_time.html"),

]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

Next, we’ll implement the endpoint function show_time(). Since this function has to access the submitted data, it
takes the request as parameter, and the data in the request is available through request.values. After calculating
the converted time, the function passes the source and destination times to the template, along with the location
names. Source and destination times consist of dictionary items indicating how to display them (text), and what data
to submit (value).

from dateutil import parser, tz

def show_time(request):
dt = request.values.get("dt")
dt_naive = parser.parse(dt)

src = request.values.get("src")
src_zone = tz.gettz(src)

dst = request.values.get("dst")
dst_zone = tz.gettz(dst)

dst_dt = convert_tz(dt_naive, src_zone, dst_zone)
render_ctx = {

"src_dt": {
"text": dt_naive.ctime(),
"value": dt

(continues on next page)

2.1. Tutorial: Time zone convertor 9

Clastic, Release 20.0

(continued from previous page)

},
"dst_dt": {

"text": dst_dt.ctime(),
"value": dst_dt.strftime('%Y-%m-%dT%H:%M')

},
"src_location": get_location(src),
"dst_location": get_location(dst),

}
return render_ctx

The only missing piece is the convert_tz() function that will actually do the conversion:

def convert_tz(dt_naive, src_zone, dst_zone):
src_dt = dt_naive.replace(tzinfo=src_zone)
dst_dt = src_dt.astimezone(dst_zone)
return dst_dt

And below is a simple show_time.html template. Note how the text and value subitems are used:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Time zone convertor</title>

</head>
<body>
<h1>Time zone convertor</h1>
<p class="info">
When it's <time datetime="{src_dt.value}">{src_dt.text}</time>
in {src_location},

it's <time datetime="{dst_dt.value}">{dst_dt.text}</time>
in {dst_location}.

</p>
<p>Go to the home page.</p>

</body>
</html>

2.1.4 Static assets

As our next step, let us apply some style to our markup. We create a subfolder named static in the same folder as
our Python source file and put a file named custom.css into that folder. Below is the example content for the file:

body {
font-family: 'Roboto', 'Helvetica', 'Arial', sans-serif;

}

h1 {
font-size: 3em;

}

p, h1 {
text-align: center;

}

form {

(continues on next page)

10 Chapter 2. Getting Started

Clastic, Release 20.0

(continued from previous page)

display: flex;
flex-direction: column;
align-items: center;

}

input, select, button {
font: inherit;

}

label {
display: block;

}

div.timezones {
display: flex;
justify-content: space-between;
margin: 1rem 0;

}

div.timezone {
width: 45%;

}

p.info {
font-size: 2em;
line-height: 2;

}

time {
color: #ff0000;

}

The changes to the application code will be quite small. First, we define the file system path to the folder that contains
the static assets:

CUR_PATH = os.path.dirname(os.path.abspath(__file__))
STATIC_PATH = os.path.join(CUR_PATH, "static")

And then we add a route by creating a StaticApplication with the static file system path we have defined, and
we set it as the endpoint that will handle the requests to any application path under /static:

from clastic.static import StaticApplication

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
("/show", show_time, "show_time.html"),
("/static", static_app),

]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

Don’t forget to add the stylesheet link to the templates:

2.1. Tutorial: Time zone convertor 11

Clastic, Release 20.0

<head>
<meta charset="utf-8">
<title>Time zone convertor</title>
<link rel="stylesheet" href="/static/custom.css">

</head>

2.1.5 Working with JSON

Our last task is to display the converted time in the same page as the form instead of moving to a second page. In
order to achieve this, we’re going to implement a basic JSON API endpoint to update the page with data sent to and
received from the application.

Actually, we can use our show_time() function for this purpose, with minimal changes. Instead of accessing the
submitted data through request.values, we just load it from request.data. No changes are needed regarding
the returned value.

import json

def show_time(request):
values = json.loads(request.data)

dt = values.get("dt")
dt_naive = parser.parse(dt)

src = values.get("src")
src_zone = tz.gettz(src)

dst = values.get("dst")
dst_zone = tz.gettz(dst)

dst_dt = convert_tz(dt_naive, src_zone, dst_zone)
render_ctx = {

"src_dt": {
"text": dt_naive.ctime(),
"value": dt

},
"dst_dt": {

"text": dst_dt.ctime(),
"value": dst_dt.strftime('%Y-%m-%dT%H:%M')

},
"src_location": get_location(src),
"dst_location": get_location(dst),

}
return render_ctx

The next thing is to set the renderer to render_json() for this route:

from clastic import render_json

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
("/show", show_time, render_json),

(continues on next page)

12 Chapter 2. Getting Started

Clastic, Release 20.0

(continued from previous page)

("/static", static_app),
]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

At this point, you should be able to test this route using curl:

curl -X POST -H "Content-Type: application/json" \
-d '{"dt": "2020-04-01T10:28", "src": "Australia/Tasmania", "dst": "Africa/Timbuktu

→˓"}' \
http://localhost:5000/show

And the home page template becomes:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Time zone convertor</title>
<link rel="stylesheet" href="/static/custom.css">
<script>
async function showResult(event, form) {

event.preventDefault();
let formData = new FormData(form);
let response = await fetch('/show', {
method: 'POST',
body: JSON.stringify(Object.fromEntries(formData))

});
let json = await response.json();
document.getElementById('src_dt').innerHTML = json['src_dt']['text'];
document.getElementById('src_dt').setAttribute('datetime', json['src_dt']['value

→˓']);
document.getElementById('src_location').innerHTML = json['src_location'];
document.getElementById('dst_dt').innerHTML = json['dst_dt']['text'];
document.getElementById('dst_dt').setAttribute('datetime', json['dst_dt']['value

→˓']);
document.getElementById('dst_location').innerHTML = json['dst_location'];
document.querySelector('.info').style.display = 'block';

}
</script>

</head>
<body>
<h1>Time zone convertor</h1>
<form action="." method="POST" onsubmit="showResult(event, this)">
<input type="datetime-local" name="dt" value="{now}" required>

<div class="timezones">
<div class="timezone">

<label for="src">From:</label>
<select name="src" id="src">
{#zones}
{@eq key=location value="{default_src}"}
<option value="{zone}" selected>{location}</option>
{:else}
<option value="{zone}">{location}</option>
{/eq}
{/zones}

(continues on next page)

2.1. Tutorial: Time zone convertor 13

https://curl.haxx.se/

Clastic, Release 20.0

(continued from previous page)

</select>
</div>

<div class="timezone">
<label for="dst">To:</label>
<select name="dst" id="dst">
{#zones}
{@eq key=location value="{default_dst}"}
<option value="{zone}" selected>{location}</option>
{:else}
<option value="{zone}">{location}</option>
{/eq}
{/zones}

</select>
</div>

</div>

<button type="submit">Show</button>
</form>

<p class="info">
When it's <time id="src_dt" datetime="2020-01-01T18:00">Jan 1 2020</time>
in UTC,

it's <time id="dst_dt" datetime="2020-01-01T18:00">Jan 1 2020</time>
in UTC.

</p>
</body>
</html>

The changes are:

• The template for showing the result has been merged. It contains dummy information.

• The JavaScript code for updating the page is added. It gets called when the form gets submitted (when the button
is clicked).

One last thing to do is to hide the result markup before the user clicks the “Show” button. This can be easily achieved
in CSS:

p.info {
display: none;

}

This concludes the introductory tutorial. The full application code can be found in the repo. Check out the second part
to learn more about Clastic’s features.

2.2 Tutorial: Link Shortener

Note: This document continues from where the first part left off. As in the first part, we proceed by developing an
example application step by step. We suggest that you code along and try out the various stages of the application. In
this manner, completing it should take about an hour.

The first part of the tutorial covered some basic topics like routing, form handling, static assets, and JSON endpoints.
This second part will show examples for resource handling, redirection, errors, and middleware usage.

14 Chapter 2. Getting Started

https://github.com/mahmoud/clastic/tree/master/examples/tzconvert

Clastic, Release 20.0

The example application will be a link shortener. There will be an option for letting shortened links expire, based
on time or on the number of clicks. Users can select the shortened names (aliases) themselves, or let the application
generate one. Expired aliases will not be reusable.

A screenshot of the application is shown below:

Fig. 2: The user can fill in a form to create a new link, or view recorded links. The first and last recorded links are
autogenerated, whereas the second one is user-supplied.

For the sake of simplicity, we’ll use the shelve module in the Python standard library as our storage backend. A
stored link entry will consist of the target URL, the alias, the time when the link will expire, the maximum number of
clicks, and the current number of clicks. The alias will be the key, and the full link data will be the value. Below is a
simple implementation (file storage.py), without alias generation and link expiration features:

import os
import shelve
import time

(continues on next page)

2.2. Tutorial: Link Shortener 15

Clastic, Release 20.0

(continued from previous page)

class LinkDB:
def __init__(self, db_path):

self.db_path = db_path
if not os.path.exists(self.db_path):

with shelve.open(self.db_path, writeback=True) as db:
db["last_id"] = 41660
db["entries"] = {}

def add_link(self, target_url, alias=None, expiry_time=0, max_count=0):
with shelve.open(self.db_path, writeback=True) as db:

now = time.time()
entry = {

"target": target_url,
"alias": alias,
"expires": now + expiry_time if expiry_time > 0 else 0,
"max_count": max_count,
"count": 0,

}
db["entries"][alias] = entry

return entry

def get_links(self):
with shelve.open(self.db_path) as db:

entries = db["entries"].values()
return entries

def use_link(self, alias):
with shelve.open(self.db_path, writeback=True) as db:

entry = db["entries"].get(alias)
if entry is not None:

entry["count"] += 1
return entry

The expiry time is given in seconds. Expiry values of zero for both time and clicks means that the link will not expire
based on that property. It’s also worth noting that the .add_link() method returns the newly added link. Since
alias generation isn’t implemented yet, the users will have to enter aliases themselves.

• Getting started

• Resources

• Redirection

• Named path segments

• Errors

• Using middleware

• Cookies

2.2.1 Getting started

Let’s jump right in and start with the following template:

16 Chapter 2. Getting Started

Clastic, Release 20.0

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Erosion</title>
<link rel="stylesheet" href="/static/style.css">

</head>
<body>
<main class="content">

<h1>Erosion</h1>
<p class="tagline">Exogenic linkrot for limited sharing.</p>

<section class="box">
<h2>Create a URL</h2>
<form method="POST" action="/submit" class="new">
<p class="target">
<label for="target_url">Web URL:</label>
<input type="text" name="target_url">

</p>

<p>
<label for="new_alias">Shortened as:</label>
{host_url}
<input type="text" name="new_alias">
(optional)

</p>

<p>
<label for="expiry_time" class="date-expiry-l">Time expiration:</label>
<input type="radio" name="expiry_time" value="300"> five minutes
<input type="radio" name="expiry_time" value="3600"> one hour
<input type="radio" name="expiry_time" value="86400"> one day
<input type="radio" name="expiry_time" value="2592000"> one month
<input type="radio" name="expiry_time" value="0" checked> never

</p>

<p>
<label for="max_count">Click expiration:</label>
<input type="number" name="max_count" size="3" value="1">

</p>

<button type="submit">Submit</button>
</form>

</section>

{?entries}
<section>
<h2>Recorded URLs</h2>

{#entries}

{host_url}{.alias} » {.target} -
 ({.count} / {.max_count} clicks)

{/entries}

</section>

(continues on next page)

2.2. Tutorial: Link Shortener 17

Clastic, Release 20.0

(continued from previous page)

{/entries}
</main>

</body>
</html>

This template consists of two major sections: one for adding a new entry, and one for listing recorded entries. It
expects two items in the render context:

• host_url for the base URL of the application

• entries for the shortened links stored in the application

And now for the application code:

import os

from clastic import Application
from clastic.render import AshesRenderFactory
from clastic.static import StaticApplication

CUR_PATH = os.path.dirname(os.path.abspath(__file__))
STATIC_PATH = os.path.join(CUR_PATH, "static")

def home():
return {"host_url": "http://localhost:5000", "entries": []}

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
("/static", static_app),

]
render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, render_factory=render_factory)

app = create_app()

if __name__ == "__main__":
app.serve()

This is a very simple application that doesn’t do anything that wasn’t covered in the first part of the tutorial. Apart
from the static assets, the application has only one route. and its endpoint provides an initial context for the given
template.

2.2.2 Resources

The first issue we want to solve is that of passing the host URL to the template because the application will not run on
localhost in production. To achieve this, we need a way of letting the endpoint function get the host URL, so that it
can put it into the render context. Clastic lets us register resources with the application; these will be made available
to endpoint functions when requested.

Let’s start by adding a simple, ini-style configuration file named erosion.ini, with the following contents:

18 Chapter 2. Getting Started

Clastic, Release 20.0

[erosion]
host_url = http://localhost:5000

Now we can read this file during application creation:

from configparser import ConfigParser

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
("/static", static_app),

]

config_path = os.path.join(CUR_PATH, "erosion.ini")
config = ConfigParser()
config.read(config_path)

host_url = config["erosion"]["host_url"].rstrip("/") + "/"
resources = {"host_url": host_url}

render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, resources=resources, render_factory=render_factory)

The application resources are kept as items in a dictionary (resources in the example). After getting the host
URL from the configuration file, we put it into this dictionary, which then gets registered with the application during
application instantiation.

Endpoint functions can access application resources simply by listing their dictionary keys as parameters:

def home(host_url):
return {"host_url": host_url}

Let’s apply a similar solution for passing the entries to the template. First, add an option to the configuration file:

[erosion]
host_url = http://localhost:5000
db_path = erosion.db

Next, add the database connection to the application resources:

from storage import LinkDB

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
("/static", static_app),

]

config_path = os.path.join(CUR_PATH, "erosion.ini")
config = ConfigParser()
config.read(config_path)

host_url = config["erosion"]["host_url"].rstrip('/') + '/'

(continues on next page)

2.2. Tutorial: Link Shortener 19

Clastic, Release 20.0

(continued from previous page)

db_path = config["erosion"]["db_path"]
if not os.path.isabs(db_path):

db_path = os.path.join(os.path.dirname(config_path), db_path)
resources = {"host_url": host_url, "db": LinkDB(db_path)}

render_factory = AshesRenderFactory(CUR_PATH)
return Application(routes, resources=resources, render_factory=render_factory)

And finally, use the database resource in the endpoint function:

def home(host_url, db):
entries = db.get_links()
return {"host_url": host_url, "entries": entries}

2.2.3 Redirection

Let’s continue with creating new shortened links. The new link form submits its data to the /submit path. The
endpoint function for this path has to receive the data, and add the new entry to the database. Once this is done, we
don’t want to display another page, we want to redirect the visitor back to the home page. Since the home page lists
all entries, we should be able to see our newly created entry there. We use the redirect() function for this:

from clastic import redirect
from http import HTTPStatus

def add_entry(request, db):
target_url = request.values.get("target_url")
new_alias = request.values.get("new_alias")
expiry_time = int(request.values.get("expiry_time"))
max_count = int(request.values.get("max_count"))
entry = db.add_link(

target_url=target_url,
alias=new_alias,
expiry_time=expiry_time,
max_count=max_count,

)
return redirect("/", code=HTTPStatus.SEE_OTHER)

What’s left is adding this route to the application. If an endpoint function directly generates a response -as our example
does via redirection- there is no need for a renderer:

from clastic import POST

def create_app():
static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
POST("/submit", add_entry),
("/static", static_app),

]

...

We add this route as a POST route. This makes sure that other HTTP methods will not be allowed for this path.

20 Chapter 2. Getting Started

Clastic, Release 20.0

You can try typing the address http://localhost:5000/submit into the location bar of your browser, and
you should see a MethodNotAllowed error. There are also other method-restricted routes, like GET, PUT, and
DELETE.

2.2.4 Named path segments

Now let’s turn to using the shortened links. Any path other than the home page, the form submission path /submit,
and static asset paths under /static will be treated as an alias, and we’ll redirect the browser to its target URL.1 It
makes sense to make this a GET-only route:

from clastic import GET

routes = [
("/", home, "home.html"),
POST("/submit", add_entry),
("/static", static_app),
GET("/<alias>", use_entry),

]

Important: Note that the ordering of the routes is significant. Clastic will try dispatch a request to an endpoint
function in the given order of routes.

Angular brackets in route paths are used to name segments. The part of the path that matches the segment will then be
available to the endpoint function as a parameter by the same name:

def use_entry(alias, db):
entry = db.use_link(alias)
return redirect(entry["target"], code=HTTPStatus.MOVED_PERMANENTLY)

2.2.5 Errors

But what if there is no such alias recorded? A sensible thing to do would be to return a NotFound error:

from clastic.errors import NotFound

def use_entry(alias, db):
entry = db.use_link(alias)
if entry is None:

return NotFound()
return redirect(entry["target"], code=HTTPStatus.MOVED_PERMANENTLY)

2.2.6 Using middleware

Clastic allows us to use middleware to keep endpoint functions from having to deal with routine tasks such as serializa-
tion, logging, database connection management, and the like. For example, the PostDataMiddleware can be used
to convert submitted form data into appropriate types and make them available to endpoint functions as parameters:

1 You should remember that a browser can make an automatic request for the site’s favicon at an address like /favicon.ico. Our code will
treat this as a missing alias.

2.2. Tutorial: Link Shortener 21

Clastic, Release 20.0

from clastic.middleware.form import PostDataMiddleware

def create_app():
new_link_mw = PostDataMiddleware(

{"target_url": str, "new_alias": str, "expiry_time": int, "max_count": int}
)

static_app = StaticApplication(STATIC_PATH)
routes = [

("/", home, "home.html"),
POST("/submit", add_entry, middlewares=[new_link_mw]),
("/static", static_app),
GET("/<alias>", use_entry),

]

...

The endpoint function doesn’t need to get the data from request.values anymore:

def add_entry(db, target_url, new_alias, expiry_time, max_count):
entry = db.add_link(

target_url=target_url,
alias=new_alias,
expiry_time=expiry_time,
max_count=max_count,

)
return redirect("/", code=HTTPStatus.SEE_OTHER)

2.2.7 Cookies

At the moment, after adding a new entry, the endpoint function only redirects to the home page. Say we want to
display a notice to the user indicating that the entry was successfully added. This requires passing the new entry data
from the add_entry() endpoint function to the home() endpoint function. But redirection means a new HTTP
request and we need a way of passing data over this new request. One way to achieve this would be using a cookie:
the add_entry() function places the data in a cookie, and the home() function picks it up from there.

Cookies can be accessed through request.cookies, but in this example we want to use a signed cookie. Clastic
includes a SignedCookieMiddleware for this purpose. This time we’re going to register the middleware at the
application level rather than for just one route. The secret key for signing the cookie will be read from the configuration
file:

from clastic.middleware.cookie import SignedCookieMiddleware

def create_app():
...

cookie_secret = config["erosion"]["cookie_secret"]
cookie_mw = SignedCookieMiddleware(secret_key=cookie_secret)

render_factory = AshesRenderFactory(CUR_PATH)
return Application(

routes,
resources=resources,

(continues on next page)

22 Chapter 2. Getting Started

Clastic, Release 20.0

(continued from previous page)

middlewares=[cookie_mw],
render_factory=render_factory,

)

If a function wants to access this cookie, it just has to declare a parameter named cookie.

Here’s how the first endpoint function stores the new alias in the cookie:

def add_entry(db, cookie, target_url, new_alias, expiry_time, max_count):
entry = db.add_link(

alias=new_alias,
target_url=target_url,
expiry_time=expiry_time,
max_count=max_count,

)
cookie["new_entry_alias"] = new_alias
return redirect("/", code=HTTPStatus.SEE_OTHER)

And here’s how the second endpoint function gets the alias from the cookie, and puts it into the render context:

def home(host_url, db, cookie):
entries = db.get_links()
new_entry_alias = cookie.pop("new_entry_alias", None)
return {

"host_url": host_url,
"entries": entries,
"new_entry_alias": new_entry_alias,

}

And a piece of markup is needed in the template to display the notice:

<h1>Erosion</h1>
<p class="tagline">Exogenic linkrot for limited sharing.</p>

{#new_entry_alias}
<p class="message">

Successfully created {host_url}{.}.
</p>
{/new_entry_alias}

For the alias generation and link expiration features, you can refer to the full application code in the repo. To make
this example into a real-world application, the storage module must be modified to handle concurrent requests.

2.3 Applications and Routes

When it comes to Python and the web, the world speaks WSGI (Web Server Gateway Interface). And a Clastic
provides exactly that: A WSGI Application.

Clastic Applications are composed using Python code, plain and simple. No decorators, no settings.py, no
special configuration file. Just constructed objects, used to construct other objects.

Specifically, Applications consist of Routes, Resources, Middleware, and Error Handlers.

2.3. Applications and Routes 23

https://github.com/mahmoud/clastic/tree/master/examples/erosion2
https://www.python.org/dev/peps/pep-0333/

Clastic, Release 20.0

2.3.1 The Application

class clastic.Application(routes=None, resources=None, middlewares=None, ren-
der_factory=None, error_handler=None, **kwargs)

The central object around which Clastic revolves.

The Application initializer checks that all endpoints, render functions, and middlewares have their dependencies
satisfied before completing construction. If the signatures don’t line up, an NameError will be raised.

Parameters

• routes (list) – A list of Route instances, SubApplications, or tuples. Defaults to [].
Add more with add().

• resources (dict) – A dict which will be injectabled to Routes and middlewares in this
Application. Keys must all be strings, values can be any Python object. Defaults to {}.

• middlewares (list) – A list of Middleware objects. Defaults to [].

• render_factory (callable) – An optional callable to convert render arguments into
callables, such as AshesRenderFactory.

• debug (bool) – Set to True to enable certain debug behavior in the application.

• error_handler – Advanced: An optional ErrorHandler instance. Defaults to
ErrorHandler. If debug is True, defaults to ContextualErrorHandler.

• slash_mode (str) – Advanced: Controls how the Application handles trailing slashes.
One of clastic.S_REDIRECT, S_STRICT, S_REWRITE. Defaults to S_REDIRECT.

In addition to arguments, certain advanced behaviors can be customized by inheriting from Application
and overriding attributes: request_type, response_type, default_error_handler_type, and
default_debug_error_handler_type.

add(entry, index=None, **kwargs)
Add a Route or SubApplication. A tuple may also be passed, which will be converted accordingly.

Note that as each Route is bound, the Application checks whether the Route’s dependencies can be satisfied
by the Application.

default_debug_error_handler_type
alias of clastic.errors.ContextualErrorHandler

default_error_handler_type
alias of clastic.errors.ErrorHandler

get_local_client()
Get a simple local client suitable for using in tests. See Werkzeug’s test Client for more info.

request_type
alias of werkzeug.wrappers.request.Request

response_type
alias of werkzeug.wrappers.response.Response

serve(address=’0.0.0.0’, port=5000, use_meta=True, use_lint=True, use_reloader=True,
use_debugger=True, use_static=True, static_prefix=’static’, static_path=None, pro-
cesses=None, **kw)

Serve the Application locally, suitable for development purposes.

Parameters

• address (str) – IP address to bind to (defaults to "0.0.0.0", which works for all
IPs)

24 Chapter 2. Getting Started

https://werkzeug.palletsprojects.com/en/1.0.x/test/#werkzeug.test.Client

Clastic, Release 20.0

• port (int) – Port to bind on (defaults to 5000)

• use_meta (bool) – Whether to automatically add the MetaApplication to /_meta/.
Defaults to True.

• use_reloader (bool) – Whether to automatically reload the application when
changes to the source code are saved. Defaults to True.

• use_debugger (bool) – Whether to wrap the Application in werkzeug’s debug mid-
dleware for interactive debugging. (Note that a PIN will be output on stdout and must be
used to interact with the error pages.)

• use_static (bool) – Whether to automatically serve static_path under static_prefix.
Defaults to True.

• static_prefix (str) – The URL path where static assets will be served. Defaults to
/static/.

• static_path (str) – The filesystem path to static assets to serve if use_static is True.
Defaults to a path named “static” in the current directory ("./static/").

• processes (int) – Number of processes to serve (not recommended for use with
use_debugger). (Use sparingly; not for production.)

Warning: The server provided by this method is not intended for production traffic use.

set_error_handler(error_handler=None)
Sets the ErrorHandler instance. Call without arguments to reset the error handler to default.

Note: This method does not reset error handlers in Routes which have already been bound.

2.3.2 Route Types

class clastic.Route(pattern, endpoint, render=None, render_error=None, **kwargs)
While Clastic may revolve around the Application, Applications would be nothing without the Routes they
contain.

The Route object is basically a combination of three things:

1. A path pattern

2. An endpoint function

3. A render function or argument

Put simply, when a request matches a Route’s pattern, Clastic calls the Route’s endpoint function, and the result
of this is passed to the Route’s render function.

In reality, a Route has many other levers to enable more routing features.

Parameters

• pattern (str) – A Pattern Mini-Language-formatted string.

• endpoint (callable) – A function to call with Injectables, which returns a Response
or a render context which will be passed to the Route’s render function.

2.3. Applications and Routes 25

https://werkzeug.palletsprojects.com/en/1.0.x/debug/
https://werkzeug.palletsprojects.com/en/1.0.x/debug/

Clastic, Release 20.0

• render (callable) – An optional function which converts the output of endpoint into a
Response. Can also be an argument which is passed to an Application’s render_factory to
generate a render function. For instance, a template name or path.

• middlewares (list) – An optional list of middlewares specific to this Route.

• resources (dict) – An optional dict of resources specific to this Route.

• methods (list) – A list of text names of HTTP methods which a request’s method must
match for this Route to match.

• render_error (callable) – Advanced: A function which converts an
HTTPException into a Response. Defaults to the Application’s error handler.

class clastic.GET(*a, **kw)
A Route subtype which only matches for GET requests.

class clastic.POST(*a, **kw)
A Route subtype which only matches for POST requests.

class clastic.PUT(*a, **kw)
A Route subtype which only matches for PUT requests.

class clastic.DELETE(*a, **kw)
A Route subtype which only matches for DELETE requests.

Note: Method-specific subtypes have identical signatures to Route.

The only steps necessary to make a Route method-specific is to import the type and add it to the tuple:

Application(routes=[("/home/", home_ep, render_func)])

Becomes:

from clastic import GET
...
Application(routes=[GET("/home/", home_ep, render_func)])

If an Application contains Routes which match the path pattern, but none of the Routes match the method, Clastic will
automatically raise a MethodNotAllowed exception for you, which results in a 405 HTTP error response to client.

2.3.3 SubApplications

Clastic features strong composability using straightforward Python constructs. An Application contains Route
instances, and those Routes can come from other Applications, using SubApplication.

class clastic.SubApplication(prefix, app, rebind_render=False, inherit_slashes=True)
Enables Application instances to be embedded in other Applications.

Note that Routes are copied into the embedding Application, and further modifications to the Application after
embedding may not be visible in the root Application.

Parameters

• prefix (str) – The path prefix under which the embedded Application’s routes will ap-
pear. / is valid, and will merge the routes in at the root level of the parent application.

• app (Application) – The Application instance being embedded.

26 Chapter 2. Getting Started

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Clastic, Release 20.0

• rebind_render (bool) – Advanced: Whether render arguments should be reinter-
preted by the embedding application’s render factory. Defaults to False.

• inherit_slashes (bool) – Advanced: Whether to inherit the embedding applica-
tion’s handling of trailing slashes. Defaults to True.

Note: This object rarely needs to be constructed manually, because this behavior is built in to the default
Application routes argument handling. Application(routes=[('/prefix', other_app)]) auto-
matically creates a SubApplication and embeds it.

2.3.4 Injectables

Clastic automatically provides dependencies to middlewares and endpoint/render functions. These dependencies can
come from one of four sets:

1. Route path pattern

2. Application resources - Arguments which are valid for the lifespan of the Application, like configuration
variables.

3. Middleware provides - Arguments provided by an Application’s middleware. See Middleware for more infor-
mation.

4. Clastic built-ins - Special arguments that are always made available by Clastic. These arguments are also
reserved, and conflicting names will raise an exception. A list of these arguments and their meanings is below.

Clastic provides a small, but powerful set of built-in arguments for every occasion. These arguments are reserved by
Clastic, so know them well.

Note: Advanced and primarily-internal built-ins are prefixed with an underscore.

Built-in injectables

• request

• next

• context

• _application

• _route

• _error

• _dispatch_state

request

Probably the most commonly used built-in, request is the current Request object being handled by
the Application. It has the URL arguments, POST parameters, cookies, user agent, other HTTP headers,
and everything from the WSGI environ. request

2.3. Applications and Routes 27

Clastic, Release 20.0

next

next is only for use by Middleware, and represents the next function in the execution chain. It is called
with the arguments the middleware class declared that it would provide. If the middleware does not
provide any arguments, then it is called with no arguments.

next allows a middleware to not worry about what middleware or function comes after it in the chain.
All the middleware knows is that the result of (or exception raised by) the next function is the Response
that a client would receive.

Middleware functions must accept next as the first argument. If a middleware function does not accept
the next argument, or if a non-middleware function accepts the next argument, an exception is raised
at Application initialization.

context

context is the output of the endpoint side of the middleware chain. By convention, it is almost always
a dictionary of values meant to be used in templating or other sorts of Response serialization.

Accepting the context built-in outside of the render branch of middleware will cause an exception to
be raised at Application initialization. context

_application

The Application instance in which this middleware or endpoint is currently embedded. The Applica-
tion has access to all routes, endpoints, middlewares, and other fun stuff, which makes _application
useful for introspective activities, like those provided by Clastic’s built-in MetaApplication.

_route

The Route which was matched by the URL and is currently being executed. Also mostly introspective
in nature. _route has a lot of useful attributes, such as endpoint, which can be used to shortcut
execution in an extreme case.

_error

Only available to the render_error functions/methods configured, this built-in is available when an
HTTPException has been raised or returned.

_dispatch_state

An internally-managed variable used by Clastic’s routing machinery to generate useful errors. See
DispatchState for more info.

And, that’s it! All other argument names are unreserved and yours for the binding.

2.3.5 Clastic Routing in a Nutshell

• Routes are always checked in the same order they were added to the Application. Some frameworks reorder
routes, but not Clastic.

• Route methods must also match, or a MethodNotAllowed is raised.

28 Chapter 2. Getting Started

Clastic, Release 20.0

• If a Route pattern matches, except for a trailing slash, the Application may redirect or rewrite the request,
depending on the Application/Route’s slash_mode.

2.3.6 Pattern Mini-Language

Route patterns use a minilanguage designed to minimize errors and maximize readability, while compiling to Python
regular expressions remaining powerful and performant.

• Route patterns are a subset of regular expressions designed to match URL paths, and is thus aware of slashes.
Slashes separate “segments”, which can be one of three types: string, int, float.

• By default a pattern segment matches one URL path segment, but clastic also supports matching multiples of
segments at once: (“:” matches one segment, “?” matches zero or one segment, “*” matches 0 or more segments,
and “+” matches 1 or more segments).

• Segments are always named, and the names are checked against other injectables for conflicts.

• Be careful when getting too fancy with URL patterns. If your pattern doesn’t match, by default users will see a
relatively plain 404 page that does not offer much help as to why their URL is incorrect.

2.3.7 Advanced Routing

• Unlike Werkzeug/Flask’s default routing, clastic does not reorder routes. Routes are matched in order.

• Applications can choose whether to redirect on trailing slashes

• Clastic’s one-of-a-kind routing system allows endpoint functionsand middlewares to participate in routing by
raising certain standard errors, telling clastic to continue to check other routes

• It’s even possible to route to a separate WSGI application (i.e., an application not written in Clastic)

• NullRoute (configurable)

class clastic.RerouteWSGI(wsgi_app)
Raise or use as a route endpoint to route to a different WSGI app.

Note that this will have unintended consequences if you have done stateful operations to the environ (such as
reading the body of the request) or already called start_response or something similar.

It’s safest to put this high in the routing table (and middleware stack).

class clastic.application.DispatchState
The every request handled by an Application creates a DispatchState, which is used to track relevant
state in the routing progress, including which routes were attempted and what exceptions were raised, if any.

Note: Objects of this type are constructed internally and are not really part of the Clastic API, except that they
are one of the built-in injectables.

2.4 Middleware

Coming soon!

• “M”-based design (request, endpoint, render)

• Dependency injection (like pytest!)

• autodoc * inventory of all production-grade middlewares (separate doc(s)?)

2.4. Middleware 29

Clastic, Release 20.0

2.5 Errors

Errors matter in the HTTP/RESTful ecosystem.

Clastic offers a full set of exception types representing standard HTTP errors, and a base HTTPException for creating
your own exception types.

The errors module also contains the Error Handler subsystem for controlling how a Clastic Application behaves in
error situations.

Contents

• Error Handlers

• The Base HTTPException

• Standard HTTP Error Types

2.5.1 Error Handlers

You can control how Clastic responds to various error scenarios by creating or configuring an Error Handler and
passing it to your Application instance.

Error Handlers are able to:

• Control which specific error types are raised on routing failures (e.g., NotFound and MethodNotAllowed).

• Control the error type which is raised when the endpoint or render function raises an uncaught exception (e.g.,
InternalServerError)

• How uncaught exceptions are rendered or otherwise turned into HTTP Responses

• Configure a WSGI middleware for the whole Application

The easiest way to control these behavior is to inherit from the default ErrorHandler and override the attributes or
methods you need to change:

class clastic.errors.ErrorHandler(**kwargs)
The default Clastic error handler. Provides minimal detail, suitable for a production setting.

Parameters reraise_uncaught (bool) – Set to True if you want uncaught exceptions to be
handled by the WSGI server rather than by this Clastic error handler.

exc_info_type
alias of boltons.tbutils.ExceptionInfo

method_not_allowed_type
alias of MethodNotAllowed

not_found_type
alias of NotFound

render_error(request, _error)
Turn an HTTPException into a Response of your

Like endpoints and render functions, render_error() supports injection of any built-in arguments,
as well as the _error argument (an instance of HTTPException, so feel free to adapt the signature as
needed.

30 Chapter 2. Getting Started

Clastic, Release 20.0

This method is attached to Routes as they are bound into Applications. Routes can technically override this
behavior, but generally a Route’s error handling reflects that of the Error Handler in the root application
where it is bound.

By default this method just adapts the response between text, HTML, XML, and JSON.

server_error_type
alias of InternalServerError

uncaught_to_response(_application, _route, **kwargs)
Called in the except: block of Clastic’s routing. Must take the currently-being-handled exception
and return a response instance. The default behavior returns an instance of whatever type is set in the
server_error_type attribute (InternalServerError, by default).

Note that when inheriting, the method signature should accept **kwargs, as Clastic does not inject
arguments as it does with endpoint functions, etc.

wsgi_wrapper = None

The default error handler presents the minimal detail to the client when an error occurs.

Clastic ships with a couple special Error Handlers which it uses to enable debuggability.

class clastic.errors.ContextualErrorHandler(*a, **kw)
An error handler which offers a bit of debugging context, including a stack and locals (for server errors) and
routes tried (for 404s).

Might be OK for some internal tools, but should generally not be used for production.

exc_info_type
alias of boltons.tbutils.ContextualExceptionInfo

not_found_type
alias of ContextualNotFound

server_error_type
alias of ContextualInternalServerError

class clastic.errors.REPLErrorHandler(*a, **kw)
This error handler wraps the Application in a Werkzeug debug middleware.

2.5.2 The Base HTTPException

class clastic.HTTPException(detail=None, **kwargs)
The base Exception for all default HTTP errors in this module, the HTTPException also inherits from
BaseResponse, making instances of it and its subtypes valid to use via raising, as well as returning from
endpoints and render functions.

Parameters

• detail (str) – A string with information about the exception. Appears in the body of the
HTML error page.

• code (int) – A numeric HTTP status code (e.g., 400 or 500).

• message (str) – A short name for the error, (e.g., "Not Found")

• error_type (str) – An error type name or link to a page with details about the type of
error. Useful for linking to docs.

• is_breaking (bool) – Advanced: For integrating with Clastic’s routing system, set to
True to specify that this error instance should not preempt trying routes further down the
routing table. If no other route matches or succeeds, this error will be raised.

2.5. Errors 31

https://werkzeug.palletsprojects.com/en/1.0.x/debug/

Clastic, Release 20.0

• source_route (Route) – Advanced: The route instance that raised this exception.

• mimetype (str) – A MIME type to return in the Response headers.

• content_type (str) – A Content-Type to return in the Response headers.

• headers (dict) – A mapping of custom headers for the Response. Defaults to None.

Note: The base HTTPException includes simple serialization to text, HTML, XML, and JSON. So if a client
requests a particular format (using the Accept header), it will automatically respond in that format. It defaults
to text/plain if the requested MIME type is not recognized.

2.5.3 Standard HTTP Error Types

In addition to error handling mechanisms, clastic.error ships with exception types for every standard HTTP
error.

Because these standard error types inherit from HTTPException, which is both an exception and a Response type,
they can be raised or returned.

Errors are organized by error code, in ascending order. Note that the message attribute is sometimes called the
“name”, e.g. “Not Found” for 404.

exception clastic.errors.BadRequest(detail=None, **kwargs)

code = 400

detail = 'Your web client or proxy sent a request that this endpoint could not understand.'

message = 'Bad Request'

exception clastic.errors.Unauthorized(detail=None, **kwargs)

code = 401

detail = 'The endpoint could not verify that your client is authorized to access this resource. Check that your client is capable of authenticating and that the proper credentials were provided.'

message = 'Authentication required'

exception clastic.errors.PaymentRequired(detail=None, **kwargs)
HTTP cares about your paywall.

code = 402

detail = "This endpoint requires payment. Money doesn't grow on HTTPs, you know."

message = 'Payment required'

exception clastic.errors.Forbidden(detail=None, **kwargs)

code = 403

detail = "You don't have permission to access the requested resource."

message = 'Access forbidden'

exception clastic.errors.ContextualNotFound(*a, **kw)

32 Chapter 2. Getting Started

Clastic, Release 20.0

to_dict()
One design ideal, for showing which routes have been hit: [{‘route’: (‘pattern’, ‘endpoint’, ‘render_func’),

‘path_matched’: False, ‘method_matched’: False, ‘slash_matched’: False}]

to_html(*a, **kw)

exception clastic.errors.MethodNotAllowed(allowed_methods=None, *args, **kwargs)

code = 405

detail = 'The method used is not allowed for the requested URL.'

message = 'Method not allowed'

exception clastic.errors.NotAcceptable(detail=None, **kwargs)

code = 406

detail = "The endpoint cannot generate a response acceptable by your client (as specified by your client's Accept header values)."

message = 'Available content not acceptable'

exception clastic.errors.ProxyAuthenticationRequired(detail=None, **kwargs)

code = 407

detail = 'A proxy between your server and the client requires authentication to access this resource.'

message = 'Proxy authentication required'

exception clastic.errors.RequestTimeout(detail=None, **kwargs)

code = 408

detail = 'The server cancelled the request because the client did not complete the request within the alotted time.'

message = 'Request timed out'

exception clastic.errors.Conflict(detail=None, **kwargs)

code = 409

detail = 'The endpoint cancelled the request due to a potential conflict with existing server state, such as a duplicate filename.'

message = 'A conflict occurred'

exception clastic.errors.Gone(detail=None, **kwargs)

code = 410

detail = 'The requested resource is no longer available on this server and there is no forwarding address.'

message = 'Gone'

exception clastic.errors.LengthRequired(detail=None, **kwargs)

code = 411

detail = 'A request for this resource is required to have a valid Content-Length header.'

message = 'Length required'

2.5. Errors 33

Clastic, Release 20.0

exception clastic.errors.PreconditionFailed(detail=None, **kwargs)

code = 412

detail = 'A required precondition on the request for this resource failed positive evaluation.'

message = 'Precondition failed'

exception clastic.errors.RequestEntityTooLarge(detail=None, **kwargs)

code = 413

detail = 'The method/resource combination requested does not allow data to be transmitted, or the data volume exceeds the capacity limit.'

message = 'Request entity too large'

exception clastic.errors.RequestURITooLong(detail=None, **kwargs)

code = 414

detail = 'The length of the requested URL exceeds the limit for this endpoint/server.'

message = 'Request URL too long'

exception clastic.errors.UnsupportedMediaType(detail=None, **kwargs)

code = 415

detail = 'The server does not support the media type transmitted in the request. Try a different media type or check your Content-Type header and try again.'

message = 'Unsupported media type'

exception clastic.errors.RequestedRangeNotSatisfiable(detail=None, **kwargs)

code = 416

detail = 'The client sent a ranged request not fulfillable by this endpoint.'

message = 'Requested range not satisfiable'

exception clastic.errors.ExpectationFailed(detail=None, **kwargs)
Can’t. always. get. what you want.

code = 417

detail = "The server could not meet the requirements indicated in the request's Expect header(s)."

message = 'Expectation failed'

exception clastic.errors.ImATeapot(detail=None, **kwargs)
Standards committees are known for their senses of humor.

code = 418

detail = 'This server is a teapot, not a coffee machine, and would like to apologize in advance if it is a Java machine.'

message = "I'm a teapot: short, stout."

exception clastic.errors.UnprocessableEntity(detail=None, **kwargs)

code = 422

detail = 'The client sent a well-formed request, but the endpoint encountered other semantic errors within the data.'

34 Chapter 2. Getting Started

Clastic, Release 20.0

message = 'Unprocessable entity'

exception clastic.errors.UpgradeRequired(detail=None, **kwargs)
Used to upgrade connections (to TLS, etc., RFC2817). Also WebSockets.

code = 426

detail = 'The server requires an upgraded connection to continue. This is expected behavior when establishing certain secure connections or WebSockets.'

message = 'Upgrade required'

exception clastic.errors.PreconditionRequired(detail=None, **kwargs)

code = 428

detail = "This endpoint requires a request with a conditional clause. Try resubmitting the request with an 'If-Match' or 'If-Unmodified-Since' HTTP header."

message = 'Precondition required'

exception clastic.errors.TooManyRequests(detail=None, **kwargs)

code = 429

detail = 'The client has exceeded the allowed rate of requests for this resource. Please wait and try again later.'

message = 'Too many requests'

exception clastic.errors.RequestHeaderFieldsTooLarge(detail=None, **kwargs)

code = 431

detail = 'One or more HTTP header fields exceeded the maximum allowed size.'

message = 'Request header fields too large'

exception clastic.errors.UnavailableForLegalReasons(detail=None, **kwargs)
Sit back and enjoy the Bradbury

code = 451

detail = 'The resource requested is unavailable for legal reasons. For instance, this could be due to intellectual property claims related to copyright or trademark, or government-mandated censorship.'

message = 'Unavailable for legal reasons'

exception clastic.errors.ContextualInternalServerError(*a, **kw)
An Internal Server Error with a full contextual view of the exception, mostly for development (non-production)
purposes.

NOTE: The dict returned by to_dict is not JSON-encodable with the default encoder. It relies on the ClasticJ-
SONEncoder currently used in the InternalServerError class.

to_dict(*a, **kw)

to_html(*a, **kw)

exception clastic.errors.NotImplemented(detail=None, **kwargs)

code = 501

detail = 'The resource requested has either not been implemented or does not yet support the action requested by the client.'

message = 'Response behavior not implemented'

2.5. Errors 35

Clastic, Release 20.0

exception clastic.errors.BadGateway(detail=None, **kwargs)

code = 502

detail = 'The endpoint received an invalid response from an upstream server while processing your request. Check that all upstream dependencies are properly configured and running.'

message = 'Bad gateway'

exception clastic.errors.ServiceUnavailable(detail=None, **kwargs)

code = 503

detail = 'The service or resource requested is temporarily unavailable due to maintenance downtime or capacity issues. Please try again later.'

message = 'Service or resource unavailable'

exception clastic.errors.GatewayTimeout(detail=None, **kwargs)

code = 504

detail = 'The endpoint timed out while waiting for a response from an upstream server. check that all upstream dependencies are properly configured and running.'

message = 'Gateway timeout'

exception clastic.errors.HTTPVersionNotSupported(detail=None, **kwargs)

code = 505

detail = 'The endpoint does not support the version of HTTP specified by the request.'

message = 'HTTP version not supported'

2.6 The MetaApplication

Coming Soon

2.7 Static

All web applications consist of a mix of technologies. Most human-facing websites serve up JavaScript, CSS, and
HTML.

Some of these files make sense to generate dynamically, others can be served from a file on the filesystem. Here is
where Clastic’s static serving facilities shine.

• StaticFileRoute * For when you have a single file at a single path * Will check for existence of file at startup by
default, to be safe

• StaticApplication * For when you have a directory

2.7.1 Advanced static serving

• StaticApplications can overlap in paths, and if the first Application can’t locate the requested resource, the
second Application will try, and so on. This makes it easy to serve multiple directories’ files from the same
URL path.

36 Chapter 2. Getting Started

Clastic, Release 20.0

2.8 Troubleshooting

TODO (should this be “Best Practices” or similar?)

Building web applications is never as easy as it seems. Luckily, clastic was built with debuggability in mind.

2.8.1 Flaw

If you’re using the built-in dev server, by default it reloads the application when you save a file that’s part of the
application. If you accidentally save a typo, Clastic will boot up a failsafe application on the same port and show you
a stack trace to help you track down the error. Save again, and your application should come back up.

2.8.2 Debug Mode

By default, when running the built-in dev server, Clastic exposes werkzeug’s debug application.

2.8.3 Project structure

TODO

• app.py * create_app() function * app = . . .

2.9 Clastic Compared

TODO (might belong in the FAQ instead)

In the Python world, you certainly have a lot of choices among web frameworks. Software isn’t a competition, but
there are good reasons to use clastic.

• Simple, Python-based API designed to minimize learning curve

• Minimum global state, designed for concurrency

• Respectable performance in microbenchmarks <https://github.com/the-benchmarker/web-frameworks> (not
that it matters)

• Rich dependency semantics guarantee that endpoints, URLs, middlewares, and resources line up before the
Application will build to start up.

2.9.1 Compared to Django

TODO

2.9.2 Compared to Flask

TODO

2.8. Troubleshooting 37

https://werkzeug.palletsprojects.com/en/1.0.x/debug/
https://medium.com/paypal-engineering/benching-microbenchmarks-c2aa2655c5b
https://medium.com/paypal-engineering/benching-microbenchmarks-c2aa2655c5b

Clastic, Release 20.0

38 Chapter 2. Getting Started

Python Module Index

c
clastic.errors, 32

39

Clastic, Release 20.0

40 Python Module Index

Index

A
add() (clastic.Application method), 24
Application (class in clastic), 24

B
BadGateway, 35
BadRequest, 32

C
clastic.errors (module), 32
code (clastic.errors.BadGateway attribute), 36
code (clastic.errors.BadRequest attribute), 32
code (clastic.errors.Conflict attribute), 33
code (clastic.errors.ExpectationFailed attribute), 34
code (clastic.errors.Forbidden attribute), 32
code (clastic.errors.GatewayTimeout attribute), 36
code (clastic.errors.Gone attribute), 33
code (clastic.errors.HTTPVersionNotSupported at-

tribute), 36
code (clastic.errors.ImATeapot attribute), 34
code (clastic.errors.LengthRequired attribute), 33
code (clastic.errors.MethodNotAllowed attribute), 33
code (clastic.errors.NotAcceptable attribute), 33
code (clastic.errors.NotImplemented attribute), 35
code (clastic.errors.PaymentRequired attribute), 32
code (clastic.errors.PreconditionFailed attribute), 34
code (clastic.errors.PreconditionRequired attribute), 35
code (clastic.errors.ProxyAuthenticationRequired at-

tribute), 33
code (clastic.errors.RequestedRangeNotSatisfiable at-

tribute), 34
code (clastic.errors.RequestEntityTooLarge attribute),

34
code (clastic.errors.RequestHeaderFieldsTooLarge at-

tribute), 35
code (clastic.errors.RequestTimeout attribute), 33
code (clastic.errors.RequestURITooLong attribute), 34
code (clastic.errors.ServiceUnavailable attribute), 36
code (clastic.errors.TooManyRequests attribute), 35

code (clastic.errors.Unauthorized attribute), 32
code (clastic.errors.UnavailableForLegalReasons at-

tribute), 35
code (clastic.errors.UnprocessableEntity attribute), 34
code (clastic.errors.UnsupportedMediaType attribute),

34
code (clastic.errors.UpgradeRequired attribute), 35
Conflict, 33
ContextualErrorHandler (class in clastic.errors),

31
ContextualInternalServerError, 35
ContextualNotFound, 32

D
default_debug_error_handler_type (clas-

tic.Application attribute), 24
default_error_handler_type (clas-

tic.Application attribute), 24
DELETE (class in clastic), 26
detail (clastic.errors.BadGateway attribute), 36
detail (clastic.errors.BadRequest attribute), 32
detail (clastic.errors.Conflict attribute), 33
detail (clastic.errors.ExpectationFailed attribute), 34
detail (clastic.errors.Forbidden attribute), 32
detail (clastic.errors.GatewayTimeout attribute), 36
detail (clastic.errors.Gone attribute), 33
detail (clastic.errors.HTTPVersionNotSupported at-

tribute), 36
detail (clastic.errors.ImATeapot attribute), 34
detail (clastic.errors.LengthRequired attribute), 33
detail (clastic.errors.MethodNotAllowed attribute), 33
detail (clastic.errors.NotAcceptable attribute), 33
detail (clastic.errors.NotImplemented attribute), 35
detail (clastic.errors.PaymentRequired attribute), 32
detail (clastic.errors.PreconditionFailed attribute), 34
detail (clastic.errors.PreconditionRequired attribute),

35
detail (clastic.errors.ProxyAuthenticationRequired at-

tribute), 33

41

Clastic, Release 20.0

detail (clastic.errors.RequestedRangeNotSatisfiable
attribute), 34

detail (clastic.errors.RequestEntityTooLarge at-
tribute), 34

detail (clastic.errors.RequestHeaderFieldsTooLarge
attribute), 35

detail (clastic.errors.RequestTimeout attribute), 33
detail (clastic.errors.RequestURITooLong attribute),

34
detail (clastic.errors.ServiceUnavailable attribute), 36
detail (clastic.errors.TooManyRequests attribute), 35
detail (clastic.errors.Unauthorized attribute), 32
detail (clastic.errors.UnavailableForLegalReasons at-

tribute), 35
detail (clastic.errors.UnprocessableEntity attribute),

34
detail (clastic.errors.UnsupportedMediaType at-

tribute), 34
detail (clastic.errors.UpgradeRequired attribute), 35
DispatchState (class in clastic.application), 29

E
ErrorHandler (class in clastic.errors), 30
exc_info_type (clas-

tic.errors.ContextualErrorHandler attribute),
31

exc_info_type (clastic.errors.ErrorHandler at-
tribute), 30

ExpectationFailed, 34

F
Forbidden, 32

G
GatewayTimeout, 36
GET (class in clastic), 26
get_local_client() (clastic.Application method),

24
Gone, 33

H
HTTPException (class in clastic), 31
HTTPVersionNotSupported, 36

I
ImATeapot, 34

L
LengthRequired, 33

M
message (clastic.errors.BadGateway attribute), 36
message (clastic.errors.BadRequest attribute), 32
message (clastic.errors.Conflict attribute), 33

message (clastic.errors.ExpectationFailed attribute),
34

message (clastic.errors.Forbidden attribute), 32
message (clastic.errors.GatewayTimeout attribute), 36
message (clastic.errors.Gone attribute), 33
message (clastic.errors.HTTPVersionNotSupported at-

tribute), 36
message (clastic.errors.ImATeapot attribute), 34
message (clastic.errors.LengthRequired attribute), 33
message (clastic.errors.MethodNotAllowed attribute),

33
message (clastic.errors.NotAcceptable attribute), 33
message (clastic.errors.NotImplemented attribute), 35
message (clastic.errors.PaymentRequired attribute), 32
message (clastic.errors.PreconditionFailed attribute),

34
message (clastic.errors.PreconditionRequired at-

tribute), 35
message (clastic.errors.ProxyAuthenticationRequired

attribute), 33
message (clastic.errors.RequestedRangeNotSatisfiable

attribute), 34
message (clastic.errors.RequestEntityTooLarge at-

tribute), 34
message (clastic.errors.RequestHeaderFieldsTooLarge

attribute), 35
message (clastic.errors.RequestTimeout attribute), 33
message (clastic.errors.RequestURITooLong attribute),

34
message (clastic.errors.ServiceUnavailable attribute),

36
message (clastic.errors.TooManyRequests attribute), 35
message (clastic.errors.Unauthorized attribute), 32
message (clastic.errors.UnavailableForLegalReasons

attribute), 35
message (clastic.errors.UnprocessableEntity attribute),

34
message (clastic.errors.UnsupportedMediaType at-

tribute), 34
message (clastic.errors.UpgradeRequired attribute), 35
method_not_allowed_type (clas-

tic.errors.ErrorHandler attribute), 30
MethodNotAllowed, 33

N
not_found_type (clas-

tic.errors.ContextualErrorHandler attribute),
31

not_found_type (clastic.errors.ErrorHandler
attribute), 30

NotAcceptable, 33
NotImplemented, 35

42 Index

Clastic, Release 20.0

P
PaymentRequired, 32
POST (class in clastic), 26
PreconditionFailed, 33
PreconditionRequired, 35
ProxyAuthenticationRequired, 33
PUT (class in clastic), 26

R
render_error() (clastic.errors.ErrorHandler

method), 30
REPLErrorHandler (class in clastic.errors), 31
request_type (clastic.Application attribute), 24
RequestedRangeNotSatisfiable, 34
RequestEntityTooLarge, 34
RequestHeaderFieldsTooLarge, 35
RequestTimeout, 33
RequestURITooLong, 34
RerouteWSGI (class in clastic), 29
response_type (clastic.Application attribute), 24
Route (class in clastic), 25

S
serve() (clastic.Application method), 24
server_error_type (clas-

tic.errors.ContextualErrorHandler attribute),
31

server_error_type (clastic.errors.ErrorHandler
attribute), 31

ServiceUnavailable, 36
set_error_handler() (clastic.Application

method), 25
SubApplication (class in clastic), 26

T
to_dict() (clastic.errors.ContextualInternalServerError

method), 35
to_dict() (clastic.errors.ContextualNotFound

method), 32
to_html() (clastic.errors.ContextualInternalServerError

method), 35
to_html() (clastic.errors.ContextualNotFound

method), 33
TooManyRequests, 35

U
Unauthorized, 32
UnavailableForLegalReasons, 35
uncaught_to_response() (clas-

tic.errors.ErrorHandler method), 31
UnprocessableEntity, 34
UnsupportedMediaType, 34
UpgradeRequired, 35

W
wsgi_wrapper (clastic.errors.ErrorHandler at-

tribute), 31

Index 43

	Installation
	Getting Started
	Tutorial: Time zone convertor
	Tutorial: Link Shortener
	Applications and Routes
	Middleware
	Errors
	The MetaApplication
	Static
	Troubleshooting
	Clastic Compared

	Python Module Index
	Index

